「数学月間の会」へようこそ!
Welcome to Maths Awareness Month Organizing Committee of Japan !

The period of July 22nd to August 22nd was set as "Maths Awareness Month of Japan"
by the Mathematical Association of Japan
(MAJ) in 2005.
Maths Awareness Month of Japan is run on a voluntary basis.
"Journal of Mathematical Culture (JMC)" is the organ of MAJ and is published half-yearly.
These dates are derived from two mathematical constants:
Archimedes' constant pi(22/7=3.14) and Napier's constant / Euler's number e(22/8=2.7).
During this period we support various events for raising the awareness of maths
 throughout the country.
7月22日--8月22日は数学月間(since2005)
日本数学協会は,2005年に,7月22日ー8月22日を数学月間と定めました.
この期間は,数学の基礎定数 π(22/7=3.142..) とe(22/8=2.7..) に因んでいます.
この期間に,数学への関心を高めるイベントが各地で開催されるよう応援しています.

数学と社会の架け橋=数学月間     Maths for all !
日本数学協会(MAJ), 数学月間の会(SGK)  
 

日誌

数学月間SGK通信 >> 記事詳細

2014/10/23

038_対称性の話2

Tweet ThisSend to Facebook | by:kinat
◆対称図形の重ね合わせ
正3角形の部品を複数重ね合わせると,一般に,全体の対称性は低下するが
配置の仕方により全体の対称性が上昇することもある.
イメージ 1
このようなことをとり上げている本は見かけませんが,とても面白い現象です.

◆対称性の重畳
イメージ 2
正6角形は正3角形の対称性を含んでいますから,正6角形と
正3角形を鏡映面が共通になるよう重ね合わせる(下左)と
正3角形の対称性が残ります.

正3角形と正6角形の回転軸をそろえて,鏡映面が共通でないように重畳すると,
結果は3回回転対称だけが残ります(上左)

他の図も同様ですので,各自確認ください.正6角形と正5角形の重畳の場合は,
6回回転対称と5回回転対称に含まれる下位の対称性(共通な部分群)はないので,
鏡映面の一致がなければ,対称性はなにも残りません(上右).
17:28 | 投票する | 投票数(0) | コメント(0)